

Navigation and Ancillary Information Facility

A SPICE Update

The NAIF Team 27 June 2012

The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reminder: "SPICE" Provides Observation Geometry

Agenda

Navigation and Ancillary Information Facility

We'll provide a summary of:

- capabilities no longer new but still not well known
- capabilities recently added
- capabilities being worked on now
- some thoughts about future capabilities

We're interested in your feedback:

- regarding these "new" capabilities
- on PDS4 archive meta-data for SPICE
- on any topics or issues we've not mentioned

Not Well Known Dynamic Reference Frame

- A dynamic reference frame...
 - may be constructed by you
 - has orientation that is time dependent
 - is defined by a formula implemented in SPICE code and for which you provide the parameters via an FK
 - may rely on data from other SPICE kernels
- Examples on next page
- Details and examples are found in:
 - » "Dynamic Frames" tutorial
 - » "Frames Required Reading" technical specification document
 - Both are available from the NAIF web pages

Example of a Dynamic Frame

Navigation and Ancillary Information Facility

vector is aligned with the

nadir frame's +X axis

Nadir-Oriented Spacecraft-Centered Frame

Recently Added Geometry Finder Subsystem (GF)

- Find time spans when a specified geometric event occurs (binary state functions)
 - Examples: occultation, transit, object is in field of view
 or
- Find times or time spans when a specified geometric parameter reaches a max or min, achieves a specified value, or is within a specified range (numeric functions)
 - Examples:
 - » Spacecraft altitude is between 200 and 300 km
 - » Phase angle reaches a local maximum
 - » Angular separation of two objects as seen from a third reaches an absolute minimum
- These kinds of computations are possible using "old SPICE," but the GF modules make them easier to do.

Geometry Finder Events

Navigation and Ancillary Information Facility

Binary State Functions

- Occultation or transit
- Ray in instrument field of view
- Body in instrument field-of-view

Numeric Functions

- Distance
- Range-rate
- Illumination angles
- Angular separation
- Ray-surface intercept coordinate constraint is met
- Sub-observer point coordinate constraint is met
- Position vector coordinate constraint is met

Still more event searches will be added

Being Worked on Now Extension of Shape Modeling

- Currently SPICE deals with only spheroidal and tri-axial shape models for solar system bodies
- The new Digital Shape Kernel (DSK) will accommodate:
 - digital elevation models (DEM) for large bodies such as Mars and the Moon
 - tessellated plate models for small, irregularly shaped objects such as comets, asteroids and small satellites

DSK: Digital Elevation Model

- Maps longitude/latitude to elevation
 - Elevation of a surface point can be defined as distance from the origin of a body-fixed reference frame
 - Elevation can be defined as height above a reference ellipsoid
- Example: image created from MGS laser altimeter (MOLA) Mars DEM

DSK: Tessellated Plate Model

- Surface of object is represented as a collection of triangular plates
- More flexible than digital elevation model: arbitrary 3-D surface can be modeled

Itokawa

Being Worked on Now Web-based Interface to SPICE

- In partnership with NASA/Ames, NAIF is building a web-based interface to SPICE: "WebGeocalc"
 - Use your browser to make many kinds of SPICE calculations
 - Will provide some graphical output in addition to numeric data
 - Server is located at NAIF/JPL
 - » But a local instance could be installed by anyone, anywhere
- Why build it?
 - Useful to check your own SPICE-based code under development
 - Useful in obtaining a quick back-of-envelope answer
 - Useful in diagnosing geometry problems
 - Opens SPICE capabilities to non-programmers
- Major challenge is the usual one...
 - ... kernel management!

WebGeocalc Inputs

WebGeocalc Outputs

Soon to be Underway PDS4 Meta-data for SPICE Archives

- The PDS4 development provides an opportunity to extend the kinds of meta-data associated with a SPICE archive.
- What suggestions do you have for adding new kinds of summary information to SPICE archives to make it easier for you to select and download SPICE data of interest?

Other Items "Underway"

- For release in the upcoming N65 Toolkits (~July)
 - More "geometry finder" modules
 - A number of other new APIs
 - Some code performance improvements (speed up)!
- Java Native Interface (JNI) Toolkits
 - In progress; alpha-test versions available now for trial
 - Completion perhaps in first quarter of CY2013
- Python Toolkits
 - Some preliminary work done
 - No prognosis for completion

Still Other Ideas

- Provide a frames kernel generation and visualization tool
- Provide a sky (star) catalog
 - Development was about 90% completed, then dropped
 - Any interest in this?
- Provide a generic dynamic frames kernel
 - Would contain specifications for an assortment of widely used dynamic reference frames
 - Examples: Geocentric Solar Ecliptic (GSE), Solar Magnetic (SM),
 Geocentric Solar Magnetospheric (GSM), Geomagnetic (MAG),
 Geocentric Solar Equatorial (GSEQ), Nadir-oriented frame for planetary orbiter, etc.
- Provide an instrument footprint coverage computation capability
- Provide more target models, such as rings, atmosphere, gravity, magnetosphere, ...
- Develop a more complete instrument modeling mechanism (e.g. handle geometric calibration)

Your Ideas?

- What would you like NAIF to implement, or fix?
 - Tell us now or later on during this workshop
 - Write it down on the SPICE poster
 - Send us an email